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Direct limits and tensor products of difference posets are studied. In the spirit 
of a recent paper by Isham, a potential model for an "unsharp histories" approach 
to quantum theory based on difference posets as abstract models for the set of 
effects is considered. It is shown that the set of all histories in this approach has 
an algebraic structure of a difference poset. 

1. I N T R O D U C T I O N  

In the historic paper by Birkhoff and yon Neumann (1936), the notion 
of quantum logic was introduced to the description of quantum mechanical 
events. In the axiomatic approach to quantum mechanics, the event structure 
of  a physical system is identified with a quantum logic [a cr-orthomodular 
poset or lattice (Ptfik and Pulmannovfi, 1991; Varadarajan, 1968/1970)]. More 
general structures, orthoalgebras, have been introduced by Foulis and Randall 
(1972; Randall and Foulis, 1973) and they enable one to introduce a tensor 
product (Bennett and Foulis, 1993), which is an important tool to describe 
coupled systems. 

Events of  quantum logics or orthoalgebras have a "ye s -no"  character 
and therefore they do not describe unsharp measurements. To include them, 
the set of all effects is to be considered in the Hilbert space approach to 
quantum mechanics (Busch et al., 1991), i.e., the set %(H) of all self-adjoint 
operators on the Hilbert space H with spectra in the interval [0, 1]. Then 
" y e s - n o "  events, i.e., those having spectrum in the two-point set {0, 1}, 
correspond to orthogonal projection operators on H. 

Recently, there has appeared a new mathematical model, difference 
posets (or D-posets, for short), introduced in K6pka and Chovanec (1994). 

~ Mathematical Institute, Slovak Academy of Sciences, 814 73 Bratislava, Slovakia. 

189 
0020-7748/9510200-0189507.50t0 �9 1995 Plenum Publishing Corporation 



190 Pulmannovd 

D-posets generalize quantum logics and orthoalgebras as well as the set of 
all effects. In this model, the difference operation is a primary notion from 
which we derive other, usual notions important for measurements. We note 
that the same structure, called "effect algebra," can be obtained on the basis 
of another partial binary operation, a "plus" operation (Foulis and Bennett, 
1994; Giuntini and Greuling, 1989; Pulmannovd, 1994; Hedl~ov~i and Pul- 
mannov~i, n.d.), which appears also in orthoalgebras. 

In a recent paper by Isham (n.d.) it is shown that the Gell-Mann and 
Hartle (1990a-c) axioms for a generalized "histories" approach to quantum 
theory can be modified in such a way that each history proposition in the 
standard approach is represented by a genuine projection operator. This pro- 
vides a valuable insight into the algebraic structure of general history theories, 
and also provides a number of potential models for theories of this type. Our 
aim is to present one of those models in the present paper. We use the 
partial algebraic structure of D-posets as models for the sets of all quantum 
mechanical effects. A homogeneous history (or a history filter) is modeled 
by a finite sequence of elements of a D-poset. We introduce a modification 
of Isham's axioms. Under these axioms, the set of all histories admits a 
structure of a D-poset. We show that it can be obtained by a construction of 
a direct limit of a directed system of finite tensor products of D-posets. The 
standard approach is obtained as a special case. 

We note that since effects represent unsharp measurements, we obtain 
"unsharp" histories, where a history can "exclude" itself. At this point, a 
many-valued logic comes into the picture. However, we provide a purely 
algebraic description; logical and philosophical analysis is not the subject of 
the present paper. 

2. BASIC FACTS A B O U T  D-POSETS 

A D-poset, or a difference poset, is a partially ordered set 2 L with a 
partial ordering -<, the greatest element 1, and with a partial binary operation 
O: L X L ---> L, called a difference, such that, for a, b ~ L, b O a is defined 
if and only if a ---< b, and the following axioms hold for a, b, c ~ L: 

(DPi) b O a --- b. 
(DPii) b O ( b G a )  = a. 
(DPiii) a < - b < - c ~ c O b < - c O a a n d ( c O a )  G ( c G b ) = b G a .  

The following statements have been proved in K6pka and Chovanec 
(1994). 

2As usual, we shall assume that card L --> 2. 
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Proposition 2.1. Let a, b, c, d be elements of a D-poset L. Then: 

(i) 1 G 1 is the smallest element of  L; denote it by 0. 
( i i )  a O 0  = a .  

(iii) a O a  = 0 .  

(iv) a <- b ~ b O a = O c=> b = a. 
(v) a < - - b ~ b O a = b c = > a = O .  

(vi) a < - b < _ c ~ b O a < _ _ c G a a n d ( c G a )  O ( b Q a ) = c G b .  
(vii) b - <  c , a - - -  c O b ~ b - <  c O a a n d ( c O b )  G a  = ( c G a )  

G b .  
(viii) a < - b < - c ~ a < - c O ( b O a )  a n d ( c G ( b O a ) ) G a = c G b .  

Remark 2.2 (Navara and Pthk, n.d.). A poset L with the smallest and 
greatest elements 0 and 1, respectively, and with a partial binary operation 
G: L • L ---> L such that b O a is defined i f f a  --- b, and for a, b, c ~ L we have 

(i) a O 0 = a ,  
(ii) if  a - <  b -  c, then c O  b ~ c O a  a n d ( c G a )  O ( c G b )  = 

b o a ,  

is a D-poset. 

For any element a E L we put 

a •  I G a  

Then (i) a •177 = a; (ii) a <-- b implies b • --< a • Two elements a and b of  L 
are orthogonal, and we write a _L b, iff a ~ b z (iff b - a• 

Now we introduce a partial binary operation O: L • L ~ L such that 
an element c = a • b in L is defined iff a _1_ b, and for c we have b -< c 
and a = c G b. The partial operation �9 is defined correctly because if there 
exists cl ~ L with b ----- cl and a = cl G b, then, by (viii) of Proposition 2.1 
and (DPii), we have 

( I O ( c O b ) ) O b =  1 G c =  ( 1 0 ( c l G b ) ) G b =  1 0 c l  

which implies c = cl. Moreover, 

c = a O b  = (a •  l = (b •  • (2.1) 

The operation G is commutative and associative. Very important exam- 
ples of  difference posets are orthomodular posets (=  quantum logics), orthoal- 
gebras, and sets of  effects. 
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Example  2.3. An orthomodular  poset  (OMP), that is, a partially ordered 
set L with an ordering ~ ,  the smallest and greatest elements 0 and 1, respec- 
tively, and an orthocomplementation _L: L ~ L such that 

(OMi) a •177 = a for any a ~ L, 
(OMii) a v a • = 1 for any a e L, 
(OMiii) i f a - < b ,  t h e n b  •  • 
(OMiv) i f a < - - b  -t (and we wr i t e a  • b ) , t h e n a v b  ~ L, 
(OMv) if a ----- b, then b = a v (a v b• • (orthomodular law), 

is a D-poset, when b 0 a := b ^ a • 

Example  2.4. An orthoalgebra, that is, a set L with two particular 
elements 0, 1, and with a partial binary operation 0 :  L X L ~ L such that 
for all a, b, c ~ L we have 

(OAi) i f a O b  ~ L ,  t h e n b G a  e L a n d a O b = b O a ( c o m m u t a -  
tivity), 

(OAii) i f b  O c  E L a n d a  �9 (b �9 c) E L, t h e n a O b  ~ L and 
(a �9 b) G c ~ L, and a G (b G c) = (a �9 b) G c (associativity), 

(OAiii) for a n y a  e L t h e r e i s a u n i q u e b  E L s u c h t h a t a  O b i s  
defined, and a G b = 1 (orthocomplementation), 

(OAiv) if  a �9 a is defined, then a = 0 (consistency), 

is a D-poset if b O a := (a �9 b• • where b -L is a unique element c in L 
such that b �9 c = 1. 

If  the assumptions of  (OAii) are satisfied, we write a �9 b �9 c for the 
element (a O b) G c  = a O ( b O c )  inL.  

We note that if L is an orthomodular poset and a �9 b :--- a v b whenever 
a 3_ b in L, then L with 0, 1, �9 is an orthoalgebra. The converse statement 
does not hold, in general. We recall that an orthoalgebra L is an OMP iff 
a / b i m p l i e s a v b  ~ L. 

By Navara and PtAk (n.d.) we conclude that a D-poset L with 0, 1, and 
O, defined by (2.1), is an orthoalgebra if and only if a -< 1 O a implies 
a = 0. Therefore, it is not hard to give many examples of  D-posets which 
are not orthoalgebras; such ones are sets of effects: 

Example  2.5. The set ~(H)  of all Hermit• operators A on H such that 
O -< A <-- I, where I is the identity operator on H, is a difference poset which 
is not an orthoalgebra; a partial ordering - is defined via A -< B iff (Ax, x) 
<-- (Bx, x), x ~ H, and C = B O A i f f ( A x ,  x ) -  (Bx, x) = (Cx, x), x ~ H. 

On the other hand, if in the definition of an orthoalgebra, axiom (OAiv) 
is replaced by a weaker axiom 
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(EAiv) a �9 1 is defined implies a = 0 

we obtain so-called effect algebra or weak orthoalgebra (Foulis and Bennett, 
1994; Giuntini and Greuling, 1989), which is equivalent to a D-poset (Foulis 
and Bennett, 1994; Pulmannov~, 1994). 

Let A, B be D-posets. A mapping f :  A ~ B is a morphism if 

3b 0 a ~ 3f(b) Of(a)  and f(b 0 a) = f(b) G f(a) 

A morphismf :  A --~ B is a full morphism if 

3f(b) O f (a )  and f(b) e f(a) ~ f[A] 

~ 3at, bl c A  suchthat 3bl O al and f(a) = f(aO, f(b) = f(bl) 

A morphism f :  A ~ B is a closed morphism (or a monomorphism) if 

3f(b) 0 f(a) ~ 3b G a 

It is easily seen that if f :  A --~ B is a morphism, then: 

(i) f ( 1 ) =  1. 
(ii) f (a  • = f(a) • 

(iii) 3a �9 b implies 3f(a) �9 f(b) and f(a G b) = f(a) �9 f(b). 

We recall that a morphism f is an isomorphism if it is a bijection and f -  ~ is 
also a morphism. Equivalently, if f is surjective and closed. 

Let A be a D-poset. A relation R C A • A is called a congruence 
(relation) on A if it satisfies the following: 

(i) R is an equivalence relation on A. 
(ii) If  alRbl, azRb2 and az O al, b2 ~ bl exist, then a2 e alRb 2 ~ bl. 

R will be called a closed congruence iff R satisfies in addition the following: 

(iii) If alRbl, a2Rb2 and az O al exists, then b2 O bl exists. 

We note that (iii) is equivalent to the following: 

(iii)* aiRbl, at J_ a2 ~ bl _L a2. 

Let A be a D-poset and R a congruence on A. By a we denote the congruence 
class of a ~ A with respect to R, and we define as usual AIR := {a: a E 
A }, the set of  all congruence classes of elements of A, and h: A --) A/R, a 
--~ a the natural projection from A onto AIR. In order to get a O-operation 
on A/R, the quotient of A with respect to R, we define 

/~ O c7 is defined iff there are bl E/~, al ~ a such that bl Q al is defined, 
and then/~ O ~ = (bl O a l ) -  = h(bl (~ al) 
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Then O is well-defined and the natural projection h: A --~ a/R is a full and 
surjective morphism, h is a closed morphism iff R is a closed congruence.  3 

For  more  details about morphisms and congruences of  partial algebras 
see Burmester  (1986). 

Definition 2.6. (i) A directed system (of  D-posets) is a fami ly  A_t :=  
(Ai, fij: A i "~ Aj,  i , j  e I, i <--j), where [ := (I, <--) is a directed poset,  A i is 
a D-poset  for  each i e I, and e a c h f j  is a morphism (i ----- j ) ,  such that: 

(il) fii = 1a i for every i e I. 
(i2) If  i -- j ----- m in I, then fjmfO" = f.m. 

(ii) Let  A z be a directed system of  D-posets; t hen_f :=  ((f ; :  Ai ~ A; i e I) ,  
A) is called its direct limit iff the following hold: 

( i i l )  A is a D-poset;f~ is a morphism for each i e I. 
(ii2) If  i ----- j in I, then f i fo  = )~ (i.e., f_ is compatible with AZ). 
(ii3) I f g  :=  ((g: Ai --* B, i e I), B) is any system compat ible  with A_t 

(i.e., gjf7 = gi for all i ----- j i n / ) ,  then there exists exact ly  one 
morphism g: A ~ B such that gj~ = gi for  every i �9 I (i.e., one 
has commutativi ty of  the diagram in Fig. 1). 

Often only the object A above is denoted by lim_~ A z. 
It is easy to see that every direct limit is unique up to isomorphism.  

The  existence o f  direct limits can be obtained from more general considerat ion 
(e.g., Burmester,  1986). For the convenience of  the reader, we give here a 
p roof  specialized to D-posets. 

Theorem 2.Z Let  A z be a directed system of  D-posets,  where  f i  is a 
morphism for every i, j e I, i - j .  Then a direct limit exists. 

Proo f  Pu tA  = Ui~iAi  and define a relation ----- on A as follows: we put 
a -- b (a �9 Ai, b �9 Aj) if there is k �9 / w i t h  i , j  <- k such that3~k(a) = J~k(b) 

gi 
A i  " B 

A 
Fig. I 

3We note that to get a D-poset structure on A/R, some more conditions on R are needed, in 
general (see Pulmannovfi, n.d.). 
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in A~. Let  us choose an arbitrary k~ ~ I with i, j --< k~. Then  for any l ~ I 
with k, kt --< l, the following equalities hold: 

f . l (a )  = A l t f  ikl(a) 

fit (a) = f~tfi~(a) = f~tfj.~(b) = f~ (b) 

~.t(b) = A~tL.~,(b) 

Hence 

f / k l ( a )  ~ fjtl(b) 

Reflexivi ty and symmetry of the relation --- are evident. To prove transitivity, 
let a ~ b and b =- c, where a ~ At, b ~ Aj, c E Ak. Then there are Ii, 12 E 
I with i , j  <- l i , j ,  k <- lz andf t l ( a )  = fjt~(b) and fjt2(b) = fkt2(c). Let  Ii, 12 
l; then j~t(b) = 3~gfjq(b) = fqt f iq(a) = f t (a ) ,  and 3~t(b) = f lzl f f l2(b) = 
f121fkt2(C) = 3~t(C), hence f-l(a) = At(c), so that a ----- c. Put ,4 :=  A/ ---. We 
prove that .4 can be endowed with a structure o f  a D-poset.  Let  a, b ~ A, a 

A~, b ~ Aj and let a = a / = ,  b = b/=- be the corresponding equivalence 
classes in A. We define a partial binary operation O on .4 as follows: 

/~ ~ c7 exists iff there is k ~ L i, j -< k, and 
f~(b)  ~ fi~(a) is defined in a~; 
then b ~ a = (fj~(b) O f .~(a))- 

To prove that the operation ~ is well defined, let a~, b~ be any other  repre- 
sentants with a~ ~ Aq, b~ ~ Ai~. There is 1 ~ I with i~, Jl, k --< l, and 

fj,t(b,) = fjt (b) = fk t f  je(b) 

f l t (al )  = f.l(a) = f~t f  i~(a) 

Now fjk(b) O fk (a )  exists in Ak implies J)lt(bl) O f q / ( a 0  exists in AI, and 
fj~t(bl) O fi,t(aO = f~t ( f  jk(b) G fk(a)) ,  hencefi , t (bt)  O fi , t(a,)  =- fik(b) G f.k(a). 

Clearly, T = U{a ~ Ai: ~ j  >- i, fij(a) = lj}, 0 = U{a  ~ At: 3 j  >- i, 
f j ( a )  = 0i}, where li and 0i are the greatest and the smallest elements in 
Ai, respectively. 

Define ci <-/~ iff/~ e ~ exists. Let  a -</~ -< g, and a ~ At, b E Ai, c ~ Ak 
be any representants. There is l E / w i t h  i , j ,  k <-- l, a n d f t ( a )  ----- fj.t(b) <-fkt(c) 
hold in At. The fact that At is a D-poset implies that O is a difference operation 
on fi,. From the construction it follows that ~ restricted to A i for  each i ~ I is a 
congruence relation. For every i E / ,  letj~: Ai ~ f~ be the natural projectionj~ (a) 
= a. If a ~ Ai and i -< j,  then for any k, i <- j <- k, f k  (a) = fjkf~(a), so that a -~ 

fij(a), and hencej~f/~ = j~. 
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Let q : =  ((g/: Ai ~ B, i ~ I ) ,  B) be any sys tem compat ible  with At. 
Define g: A ~ B via g( f i (a ) )  = gi(a) .  N o w f i ( a )  = f . (b ) ,  a, b ~ Ai iff there 
i s j  ~ I, i --< j withf/ j(a)  = ~i(b) .  But then gi(a)  = g i f j ( a )  = g]fo(b) = gi(b), 
hence g is a well-defined morphism.  Clearly, g is unique. This concludes the 
proof  that ,~ = lim_~ A t. �9 

Corol lary  2.8. I f  Ai,  i ~ I, in a directed sys tem At_ are orthoalgebras 
(or thomodular  posets) then the direct limit l i m ~  A t is also an orthoalgebra 
(orthomodular  poset). 

P r o o f  According to Navara  and Pt~ik (n.d.), a D-pose t  is an orthoalge- 
bra iff 

(i) a < - l O a ~ a = O .  

A D-poset  is an or thomodular  poset  iff  (i) holds along with the following: 

(ii) a 2 -b ,  b 2 , c ,  c 2_ a imply  a --< (1 O c )  O b .  

Indeed, if A is an OMP, then b G a = b / x  a '  for  a --< b, and (ii) becomes  
a --< b '  ^ c ' .  Conversely, recall that an or thoalgebra  is an O M P  iff a _1_ b, 
b 2, c, c 2, a imply a G b _1_ c. Now if (ii) holds,  then a = ((1 O c) G b) 
G d =  ( ( 1 O c )  G d ) G b ,  w h i c h i m p l i e s a G b =  ( 1 G c )  O d -  1 G c .  

From the proof  of  Theorem 2.7 it can be der ived that conditions (i), (ii) 
for the difference G are satisfied in l i m ~  A t if  they are satisfied in every Ai, 
i ~ l .  �9 

In Dvure~enskij (1994) the notions of  a b imorph i sm and tensor product 
of  two D-posets  are introduced. These  notions can be general ized to any 
finite number  n ~ N of D-posets  in a natural  way. 

Def in i t ion  2.9. Let Al, A2 . . . . .  An, B be  D-posets .  A mapping  13: AI • 
�9 -. X An ~ B is called an n - m o r p h i s m  (or a m u l t i m o r p h i s m  in general)  iff: 

(i) a, b ~ Ai, a _L b, q] ~ A:, j 4: i, 1 <-- i, j <-- n, imply  13(u])j<_n 2, 
13(vj)j<_n, where u i = qj = v], j @ i, and ui = a, vi = b, and 
13((u])) G 13((vj)) = 13((zj)), where  zj = qj, j 4: i, zi = ai �9 bi. 

(i i)  13(1, 1 . . . . .  1 ) - -  1. 

Let [3: Ai X A2 "'" • An --> B be a mul t imorphism.  To simplify our 
considerations, we introduce the fol lowing convent ions.  

Let  N = {1, 2 . . . . .  n} be a finite sequence  and K = {kl . . . . .  kin}, 
m - n, a subsequence of  N. For  any a = (ak~ . . . .  , akin ) E Akl  X " '"  X 

A~ m, we define the following: 

(i) a KN --'~ ( a i ) i < _  n is the e lement  in At • " ' "  X An such that ai = a~] 
for i = kj and ai = 1 if i ~ K. 
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(ii) 13KN: Ak~ • "'" • Akin ---> B is a mapp ing  defined by 13KN(a) = 13(aXN). 

Clearly, [3 KN is a mul t imorphism.  In particular, if K = {j},  then 13C~1N: Aj --4 
B is a morphism.  

Let  K :=  {kl . . . . .  kin} be a subsequence  of  {1, 2 . . . . .  n} =:  N. For 
any a :=  (ai)i~x and b :=  (bj)j~N\X let a Ku'b = (ui)i<_n be such that ui = a~j 
for i = kj E K, uj = bj f o r j  ~ N \ K .  Clearly a KN ~ a KN'I. 

L e m m a  2.10. Let 13: As • " ' "  X AN ~ B be a mult imorphism. Let N 
�9 = {1, 2 . . . . .  n}, K "= {kl . . . . .  k,} C N; a = (ai)i~x, b = (bi)i~x, c = 
(Ci)i~N\K, d = (di)i~x\ K. I f  13(a KN) -[- 13(bKN), then 13(a KN'c) _L 13(bKN'd). In 
particular, i f  13: As X A2 ---r B is a b imorphism,  then a • b(a, b ~ A1) 
[3(a, c) _1_ 13(b, d )  for any c, d E A2. 

P r o o f  We will proceed by induction of  card(N\K) .  
I f  ca rd(N\K)  = 1, N \ K  = {j }, then 13(a KN) = 13(a Ku'c) �9 13(aKN'cJ-); 

~(b KN) = 13(b xN'd) 0 13(b rN'ai) for  any c, d ~ Aj, where c I = lj O c, d ~ 
= lj O d, and 

13(a KN) �9 13(b KN) ~-- (13(a KN,c) ~ (~(aKN'c• ~ (13(b KN'd) ~ 13(bKN'd• 

implies that ~(a KN,c) ~ 13(b KN'd) exist, hence 13(a KN'c) I 13(bKN'd). 
I f  card(N\K)  = k, we choose  io ~ N \ K ,  and define Co = (Ui)i~u\x, Uio 

= Cio, Ui = 1, i 4: i0; do = (Vi)i~u\x, Vio = dio, vi = 1, i v ~ io. By the first 
part  o f  the proof,  13(a KN,c~ _1_ 13(bKN'do). NOW we can replace K by K U {i0}, 
and we obtain the desired result apply ing  the induction hypothesis  (to appro- 

, , , d v priately defined a ,  b ,  c ,  replacing a, b, c, d) .  el 

Defini t ion 2.11. Let As . . . . .  A,  be D-posets .  We say that a pair (R, T) 
consisting of  a difference poset  R and a n -morph i sm -r: A~ • . - .  • A, ~ R 
is a t ensor  produc t  of  As, A2 . . . . .  A,  i ff  the fol lowing conditions are satisfied: 

(i) I f  L is a D-poset  and 13: AI • " ' "  • A, --~ L is a n-morphism,  
there exists a morph i sm  +: R -+  L such that 13 = ~b o ~-. 

(ii) Every  e lement  of  R is a finite or thogonal  sum of  elements of  the 
form T((ai)i<_,) with ai E Ai, i <-- n. 

Clearly, if  a tensor product  exists, it is unique up to isomorphism.  
The fol lowing statement is a general izat ion of  Theorem 7.3 in Dvure~en- 

skij (1994); the p roof  of  it can be obta ined by a modificat ion of  the proof  
of  the latter theorem. 

Theorem 2.12. A tensor product  of  D-pose ts  As . . . . .  A,  exists iff there 
is at least one difference poset  L and an n -morph i sm 13:A1 • �9 "" • A. ---> L. 

As a corollary we obtain that a tensor  product  of  %(H~), i = 1, 2 . . . . .  
n, where %(Hi) is the set of  all effects  on the Hilbert  space Hi, in the category 
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of  D-posets exists. Indeed, we take for L in Theorem 2.12 the set %(Ht | 
�9 "" | Hn) of  all effects on the Hilbert space tensor product Ht | " '"  | Hn. 

We note that if in a class of  D-posets a tensor product o f  any two 
elements exists, then a tensor product  of  n elements exists, too. This can be 
proved by induction according to the fol lowing considerations. 

Let At . . . . .  A n be D-posets f rom the considered class. Let (B, 13) be 
the tensor product  o f  A1 . . . . .  An-l ,  and let (C, ",/) be the tensor product  of  
B, A n. Define -~: AI • " "  • An-1 X An --~ C by ~(at . . . . .  an- i ,  an) = 
"y((13(a~ . . . . .  a,z-l), an). Clearly, 5~ is an n-morphism. We claim that (C, ~) 
is a tensor product  o f  Al  . . . . .  An- l ,  An. It is easily seen that every element 
in C is a finite or thogonal  sum of  elements of  the form "y([3(at . . . . .  an-l) ,  
an) = ~(al  . . . . .  a n - b  an). Let K: A 1 X . . .  3< An_ 1 X A n ---) D be an n- 
morphism into a D-poset  D in the same class. Put N :=  { 1 . . . . .  n }, K : =  
{1 . . . . .  n - 1}. Then KXN: A1 ;< "'" )< An- I  ---)D is an (n - 1)-morphism. 
Therefore, there exists a morphism qb: B ~ D with ~b o [3 = K xN. Now define 

a mapping ~ by ~(13(al . . . . .  an- t ) ,  an) = K(al . . . . .  an-l ,  an). If  13(al . . . . .  
an- l )  k 13(bt . . . . .  bn -0 ,  then d~ o 13(al . . . . .  an- l )  L r 0 13(bl . . . . .  
bn- 1); hence 

KKN(al . . . . .  an-l)  • KKN(bl . . . . .  bn-l)  

and L e m m a  2.10 implies that 

K(al . . . . .  a . -1 ,  an) = g(13(al . . . . .  an-l), an) 

• u(bl . . . . .  b . - b  bn) = ~(13(bl . . . . .  bn-1), bn) 

Hence ~ can be extended to a bimorphism from B • An to D. Then there is 
a morphism ~: C --) D such that t~ o 3, = ~, and 

t~ �9 "~(a 1 . . . . .  an-l ,  an) = 0 0  ~(13(a  1 . . . . .  an-l), an) 

= ~.(13(al . . . .  , an-i) ,  an) = K(al . . . . .  a . - l ,  an) 

i.e., t~ o "~ = K. This proves the universal property of  (C, ~). 
In what follows, we will often denote a tensor product (R @) of  

Al . . . . .  An by R = At | " '"  | An, and write at | " '" | an instead o f  

@(at  . . . . .  an). 

Theorem 2.13. Let AI . . . . .  An be D-posets and let the tensor product  
A1 | " '"  @ An exist. Then: 

(i) For any K = {kl . . . . .  kin} C { 1, 2 . . . . .  n} = N, a tensor product  
All @m "'" @m Ak,. of  Akl . . . . .  Ak,. exists. 

(ii) For any 1 <-- m <-- n, At  @ "'" @ An = (At @,~ "'" @., Am) @2 
(Am+t |  " '"  @n--m An), where @m denotes the m-morphism in 
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the tensor product of A1 . . . . .  Am, and | denotes the (n - m)- 
morphism in the tensor product of Am+ 1 . . . . .  An. 

Proof Item (i) is a direct consequence of Theorem 2.12 and the fact 
that @xN: A k  1 X . . .  X A~m --> A j @ "'" @ An, | (a~ . . . . .  akin) = @ m  

((a~ i . . . . .  a~m xu) is an m-morphism. 
(ii) It can be proved by induction using similar methods as in the remarks 

preceding Theorem 2.13. I 

Proposition 2.14. Let T be any set, and let (3-, _ )  be a directed poset 
of finite subsequences of elements of T directed by inclusion. For every t 
T, let At be a D-poset. Assume that for every F e 3-, F = {tl . . . . .  tn}, (AF, 
| is a tensor product of At~ . . . . .  A J .  Then for every F, G ~ 3-, F C G 
there is a morphism fFa: AF --> Ao such that (As, fFG) is a directed system. 

Proof Let F, G e ~-, F _ G, 

G = {aq, . . . ,  at,}, F = {a,k ' . . . . .  ark,,}, m <- n 

Let (As, | (Ac, @G) be the corresponding tensor products. Then 

| Ate1 • . . .  X Ark,, ~ Ac 

is a multimorphism; therefore there is a (unique) morphism fro: As  ~ Aa 
such thatfFc o |  = | ClearlyfvF = idF (where idv denotes identity on As). 

Now let F, G, H E ~-, F C G C H, F = {Aq . . . . .  A,k }. Then we obtain, 
for any a E A t l  • "'" • Ark, fGH (3 frG (3 ~F(a) = fGH~FG (3 @F(a)) : 
fCH(| = fGn(| = | G~) = | FH) = | hence 

f c .  o A ~  = f F . .  " 
As a consequence, a direct limit of (AF, fFG, F, G E ~-, F <- G) exists. 
An example of tensor products in a special category of D-posets can be 

obtained as follows (Dvure6enskij and Pulmannovfi, 1994-a,b). 
Let I = [0, 1] be endowed with the natural ordering and the difference 

b O a = b - a, a, b ~ I. Then I is a D-poser. Any homomorphism m from 
a D-poset A to I is called a state on A. A set ~ of states on A is: 

(i) separating if m(a) = m(b) for any m E ~' implies a = b. 
(ii) full  iff ~ is separating and if E~=l m(ai) = 1 for any m ~ ~ ,  

then Oi~=l ai exists in A and (~in=l ai = 1. 
(iii) order determining iff the condition m(a) <- m(b) for all m E 

implies a --< b. 

If ~' is order determining, then ~ is full (Dvure6enskij and Pulmannovfi, 
1994-b). 

Let (Ai)i<_, be D-posets. We say that a couple ~ = (~,  ~) ,  where ~ is 
a nonvoid family of D-posets and ~ is a nonvoid family of n-morphisms on 
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At X . - -  X A,  such that (i) for any 13 ~ ~ there exists a D-pose t  L ~ 
such that 13:A1 x - . .  X An - e  L, and (ii) for any L ~ ~ there is an n- 
morph i sm [3 ~ ~ with 13:A1 X . . .  • A n ----) L, is said to be a consistent 
class for  (Ai)i<_n. In what  follows, Fli_<, A i : =  A1 X . - -  X A,. 

Definition 2.15. Let 7s = (~s ~ )  be a consistent class for  the D-pose ts  
Ai, i <-- n. We say that a pair (R, -r) consisting of  a difference poset  R and an 
n -morph i sm "r: 1-Ii<n Ai --) R is a tensor product of  Ai, i <- n, in the class 
7s = ( ~ ,  ~ )  i ff  the fol lowing conditions are satisfied: 

(i) R E ~ , a - ~ .  
(ii) I f  L is a D-poset  in ~ ,  and 13 is a b imorph i sm in ~ ,  [~: [Ii<_ n 

Ai --~ L, there exists a morph ism +: R ~ L such that 13 = gb o -r. 
(iii) Every  e lement  of  R is a finite @-orthogonal sum of  e lements  o f  

the fo rm "r((ai)i<__n) with a i ~ Ai, i <- n. 

Similar ly  as above,  if a tensor product (R, "r) of  Ai, i <-- n, exists in the 
class 7s it is unique up to an isomorphism.  It is clear that if  ~ consists o f  
all D-pose ts  L for  which there exists a b imorphism 13: rIi<~n Ai ---) L and 
is the fami ly  o f  all those bimorphisms,  then tensor products f rom Defini t ions 
2.11 and 2.15 coincide. 

Suppose  that ~ i  are nonempty  families of  states on difference posets  
Ai, i <-- n. We set ~ :=  II i<,  ~ i  and, if  X = (hi)i<_, ~ ~ and (ai)i<_ n E ~Ii< n 
Ai,  then ~k((ai)i<n) : =  X l ( a l )  " ' "  ~kn(an). 

Theorem 2.16. Let ~i ,  i --< n, be nonvoid systems of  states on the D- 
posets  Pi, i ~< n, respectively, ~ = [Ii< n ~[)i. Let ~s be the set o f  all D-pose t s  
L such that there is an n -morph ism K: P~ X - . .  X Pn ~ L, and the set 
~P~ :=  { ~  | " ' "  | p.,: IXi e ~,-, i <- n} is a full sys tem of  states on L, 
where IX1 | " ' "  | ~Ln(K((ai)i~n) :-~- ~t(a l )  " '"  Ix,(a,), ai ~ Pi, and let ~ 
be the set o f  all these n-morphisms  K's. Then 7s = ( ~ ,  ~ )  is a consis tent  
class for  P,., 1 ----- i --  n, and there exists a tensor product  o f  Pi, 1 <-- i <-- n. 

Proof  Let  X be the subset o f  IIi_<, Ai consisting of  all n-tuples (ai)i<_ n 
with ai ~ O, Vi .  I f  M = ((a))i<_ . . . . . .  (a~i)i<,) is a finite sequence of  e lements  
f rom X and h E ~ ,  we put 

k 

)k(M) = ~ X((a~)i<n ) 
j = l  

with the unders tanding that if M = 0 ,  then h(M) = 0. 
Def ine  now the set ~ of  all finite sequences T = ((a~)i<_n)]<_k such that 

h(T) = 1 for  any k E ~ .  Since X((1 . . . . .  1)) = 1, ~ is nonvoid.  It  is 
easy to see that for  any (ai)i<_n ~ X there is a finite sequence f rom 
containing ( ai)i<_n. 
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Denote by %(~) the set of all finite sequences ((aOi<_,~)j~j such that J 
C I and ((ai)i<n)j~ 1 ~ ~ .  W e  put ((aJ,:)iz,~)i~o = O. 

For A, B E %(if) we define A ~ B iff h(A) = MB) for any h ~ ~ .  
Then ~ is an equivalence on %(~), and let "rr(a) := {B ~ %(~):  B ~ A}. 
Let II(X) := {Tr(A): A ~ %(~)}. We organize II(X) into a poset by defining 
a partial order -< on H(X) as follows: w(A) --< -rr(B), where A = 
((a~)i<_,,)j~_~, B = ((b~)i<_~)i<_,n, iff there is C = ((ci')i -< n);<~ ~ %(if) such 
that M := ((a~)i<_,,)~<_~ U ((c()i<_,,)S<_s ~ %(~) and h(M) = h(B)  for any h 
~ .  Then w(~)  and 7r(T), where T ~ ~ is arbitrary, are the smallest and 
greatest elements in II(X). 

The difference operation ~ on I-I(X) is defined whenever 7r(A) --< -rr(B), 
and v(B) O w(A) = rr(C), where A, B, C satisfy the above conditions 
for the partial ordering -<. Then O is defined correctly, and H(X) is a 
difference poset. 

Define a mapping ~0: ~Ii<_, Ai "--') I I ( X )  via 

KO((ai)i<_n ) = L0  ' 
(ai)i<_n ~ X 
(a~)i<_,, ~ X 

Then K0 is, evidently, an n-morphism. From the construction of  II(X) we see 
that any u E H(X) is of the form u = Oj<_k Ko((a~)i<_n), and the mapping 
(| P~i, Ixi E ~i, i <- n, on II(X) defined by 

((~K0)i~ n ~i(Ko((ai)i<_~) = t x l ( a l )  " ' "  p~n(a.), ai E Ai, i <- n 

is a state on II(X). In addition, ~Ko is a full system of  states on II(X). 
Therefore, ~ ~ Q and let ~ be the set of  all n-morphisms K such that K 
maps I-[i<n A i into some L ~ ~ and 9~ be a full system of states on L. 
Then ~s = (~,~, ~ )  is a consistent class for Ai, i <- n. 

We claim that (II(X), K0) is a tensor product of  Ai, i <- n, in the class 
~s Choose L ~ ~ and an n-morphism K: l-Ii_<n Ai ---> L. Since ~ is full 
for L, it follows that if Ko((ai)i<_n) = Ko((a')i<_.), then K((ai)i_<.) = 
K((a')i<_.), and we can define a mapping ~b such that d~(Ko((ai)i~_.) = K((ai)i<_n), 
ai E Ai, i <-- n. We claim that we can extend qb to the whole I I (X)  via (b(u) 
= Gj~k K((a0~_<.), whenever u -- Oj_<~ Ko((aJ,:)~<_n), to a well-defined multi- 
morphism. Indeed, let u = Oj_<k Ko((a~)i<_n) = Ol<_m Ko((b~)i<_n) = V. Then u • 
has the form u • = Oq<_s K0((cq)/<.) and for all ~i ~ ~i,  i --< n, we have 

1 = (| m(u @ u -L) 

= (| ~,l~i(U) + (@Ko)i< n ~Li(bl • 

= (| re(v) + (| I~i(u• 
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= E 1-I p~(a~) + E 1-I p,i(@) 
j<--k i<--n q<--s i<-n 

= Z ~-I I~i(b~) + E I-[ IZi(Cq) 
l<--m i<--n q<~s i<--n 

j<-k q<_,~ 

= ~ (| W~(K((bi)i~_.) + ~ (| ~i(K(cq)~_n) 
I<--m q<--s 

Hence 

0 K((a~)i<_n) ~) 0 K((C~t)i~n) : 1 : 0 K((b~)i<_n) ~) 0 K((cq)i<n) 
k<--m q<--s I<--m q<-s 

so that 

( ~  ~((a~)i<_n)) = ( ~  K((bl)i<_,) 
j<--k l<--m 

It is easy to check that ~b is the morphism in question, which proves the 
assertion of the theorem. �9 

The tensor product ((Q~)i_<n Ai, |  := (H(X), K0) of the D-posets Ai, 
i --< n, in the class ffr is said to be a state tensor product of Ai, i <-- n, with 
respect to the state system @ = 1-I~ ~i.  It is easy to check that an analog of 
Theorem 2.13 holds for state tensor products. Also, if ~i  is order determining 
for Ai for each i <-- n, then |  is a closed multimorphism. 

Let ~(Hi), i <- n, be sets of all effects on the Hilbert spaces Hi, i <-- n, 
respectively. Then they have order-determining sets of states. As a direct 
generalization of Dvure~enskij and Pulmannovfi (1994-b) we obtain that the 
state tensor product consists of all elements of the form Zk Ekl Q "'" | E k, 
where Ei ~ %(Hi), i <- n, | is the usual tensor product of operators, for 
which there are F~ | .- .  | F~ such that Zk Ekl | " '" | E~ G ~j F~ | " "  
| F ~. = Ii Q "'" Q In (all summations are over finite index sets). 

Let At, t ~ T, be a system of D-posets such that for each t ~ T, there 
is an order-determining set ~b t of states. Then a directed system constructed 
from state tensor products of these D-posets over finite subsets of T has the 
proPerty that every morphismfeF, E C_ F, is closed. This can be easily derived 
from the construction of the state tensor products. 

3. GENERALIZED AXIOMS FOR A SPACE OF HISTORIES 

Gell-Mann and Hartle axioms postulated a new approach to quantum 
theory in which the notion of "history" is ascribed a fundamental role, i.e., 
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a history may be an irreducible entity in its own right that is not necessarily 
to be constructed as a t ime-ordered string o f  single-time propositions. 
According to Isham (n.d.), these axioms and definit ions are assentially as fol- 
lows: 

1. The fundamental ingredients in the theory are a space of  histories 
and a space of  decoherencefunctionals, which are complex-valued functions 
of  pairs of  histories. 

2. The set of  histories possesses a partial order  --<. If a --- [3, then 13 is 
said to be coarser than ct, or a coarse-graining of  t~; dually, ct is finer than 
[3, or a fine-graining of  [3. Heuristically this means that oL possesses a more 
precise specification than 13. 

3. There is a notion of  two histories ct, [3 to be disjoint, c~ Z [3. Heuristi- 
cally, if oL • [3, then if either ~ or [3 is "real ized,"  the other is "excluded." 

4. There is a unit history 1 (heuristically, the history that is always 
realized) and a null history 0 (heuristically, the history that is never realized). 
For all histories we have 0 --< ~ --- 1. 

5. Two histories, a ,  [3 that are disjoint can be combined to form a new 
history oL v [3 (heuristically, the history "ct or  13"). 

6. A set of  histories oL l, a2 . . . . .  oL N is said to be exclusive if  ed 3_ ed 
for all i, j --- 1, 2 . . . . .  N. The set is exhaustive (or complete) if it is exclusive 
and i fc t  l v . . . v a  N =  1. 

7. Any decoherence functional d satisfies the fol lowing conditions: 

(a) d(0, a)  = 0 for all a .  
(b) Hermicity: d(ct, [3) = d([3, c~) for  all t~, 13. 
(c) Positivity: d(a ,  c0 - 0 for all ec 
(d) Additivity: if a • [3, then, for  all % d (a  v 13) = d(a ,  ~/) + d([3, ~/). 
(e) Normalization: If a l ,  o~2 . . . . .  Ot N and [31, [32 . . . . .  [3M are two 

complete sets of  histories then 

N M 

E E 13J) = 1 
,=1 j = l  

It is important to note that this axiomatic scheme is given a physical interpreta- 
tion only in relation to consistent sets o f  histories. A complete set C of  
histories is said to be (strongly) consistent with respect  to a particular decoher- 
ence functional d if d(oL, 13) = 0 for all ~, [3 ~ C such that a ~ [3. Under 
these circumstances, d(~, a )  is given the physical  interpretation as the proba- 
bility that the history c~ will be "realized." The  Gel l -Mann and Hartle axioms 
then guarantee that the usual Ko lmogorof f  probabil i ty sum rules will be satis- 
fied. 
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Let us briefly summarize how "histories" are understood in the conven- 
tional interpretation of  an open Hamil tonian quantum system that is subject 
to measurement  by an external (classical) observer. 

Let U(q, to) denote the unitary t ime-evolut ion operator from time to to 
tl, i.e., U(tl, to) = e x p } - i ( t l  - to)H/h}. Then, in the Schrrdinger  picture, 
the density operator state p(t0) at t ime to evolves  in time tl - to to p(tl), where 

p(tl) = U(tl, to)p(to)U(tl, to) ~ = U(tl, to)p(to)U(tl, to) -1 (3.1) 

Suppose that a measurement  is made at t ime tj o f  a property represented by 
a projection operator P. Then the probabili ty that the property will be found is 

Prob(P -- 1; p(tl)) = tr(Pp(tl))  

= tr(PU(tl,  to)p(to)U(tl, to) t) 

= tr(P(q)p(to)) (3.2) 

where 

P(tO :=  U(tl, to)tP(to)U(tl, to) (3.3) 

is, in the Heisenberg picture, an operator  defined with respect to the time 
tl. If the result of  this measurement  is kept, then according to the von 
Neumann-Lt iders  "reduction" postulate, the appropriate density matrix to 
use for any future calculation is 

P( t Op( to)P( q ) 
Pred(tl) :=  (3.4) 

tr(P(tOp(to)) 

Now suppose that a measurement  is per formed of  a second observable Q at 
time t2 > ft. Then, according to the above,  the conditional probability of  
getting Q = 1 at t ime t2 given that P = 1 was found at time tl [and that the 
original state was p(t0)] is 

Prob(Q = 1 IP = 1 at tl; p(t0)) = tr(Q(tz)prea(q)) 

= tr(Q(t2)P(tl)p(to)P(tO) (3.5) 
tr(P(tl)p(to)) 

The probability of  getting P = 1 at t~ and Q = 1 at t2 is this conditional 
probability multiplied by Prob(P = 1; p( t0) ,  i.e., 

Prob(P = 1 at tl and Q = 1 at t2; p(t0)) = tr(Q(tz)P(tl)p(to)P(tO) (3.6) 

Generalizing to a sequence of measurements  of  propositions ~xt~, o/-t2 . . . .  , 

c% at times q, tz . . . . .  tn, the joint  probabili ty of  finding all the associated 
properties is 
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Prob(e% = 1 at tl and a t 2  ~-  1 at t2 and . . .  c% = 1 at tn; p(t0)) 

= tr(e%(t~) . . .  o~q(tl)p(to)O~q(tl) . . .  atn(tn) ) (3.7) 

where we used the relation p2 = p for a projection operator. 
The main assumption of the consistent histories interpretation of quantum 

theory is that, under appropriate conditions, the probability assignment (3.7) 
is still meaningful for a closed system, with no external observer or associated 
measurement-induced state-vector reductions. The satisfaction or otherwise 
of these conditions is determined by the behavior of the decoherence func- 
tional d0(a , [3), which, for the pair of sequences of projection operators a 
"= (a,l, at2 . . . . .  at,,) and [3 := ([3tl, [3t 2 . . . .  , [3~,), is defined as 

do(a, fS) "= tr( C~p(to)C~) (3.8) 

where 

Ca := at,,(tn) "'" at2(t2)o%(tl) 

= U(to, tn)o%U(t,, tn-1) "'" U(t3, t2)at2U(t2, tl)aqU(tl,  to) (3.9) 

We note that the definition (3.8) satisfies the conditions 7(a)-(e) of a decoher- 
ence functional. 

Isham (n.d.) suggested to find, in the quantum logic approach, candidates 
for the "history analogs" of the standard Hamiltonian theory. To this aim, a 
logic L of single-time propositions was considered. A history f i l ter was 
defined to be any finite sequence (atl . . . . .  a~,) of single-time propositions 
ati ~ L which is time-ordered in the sense that tl < tz < "'" < t,. Thus, in 
the special case when L is identified with the lattice L(H) of projection 
operators on a Hilbert space H, a history filter concides with the notion of 
a "homogeneous history" in the Gell-Mann and Hartle approach. Also, it is 
a time-labeled version of what Mittelstaedt and Stachow (1983; see also 
Mittelstaedt, 1977, 1983) call a sequential conjunction, i.e., it corresponds 
to the proposition "aq is true at time tl and then ~,z is true at time t2 and 
t h e n . . ,  and then c% is true at time tn." The phrase "history filter" is intended 
to capture the idea that each single-time proposition ati in the collection 
(at~ . . . . .  c%) serves to "filter out" the properties of the system that are 
realized in the history of the universe. 

It is important to be able to manipulate history filters at different sets 
of time points. To this end, it is useful to think of a history filter as something 
that is defined at every time point but which is "active" only at a finite subset 
of points. This can be realized mathematically (Isham, n.d.) by functions for 
the space points T (the real line ~) to the logic L with the property that each 
map is equal to the unit single-time proposition for all but a finite set of t 
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values. Also, we  will consider  all history filters containing the null single- 
t ime proposi t ion at a t ime t as equivalent to a null history filter, which has 
a null s ingle-t ime proposi t ion at all points t e T and is appended to the 
history filter space. It is clear that the temporal  properties of  a history filter 
are encoded in the finite set o f  t ime points at which it is active, i.e., the 
points t ~ T such that o~t :# 1. Let the set of  all history filters be denoted 
by ~ The  set of  t E T for  which at  ~ 1 is called the temporal support, 
or just support of  a E OR(L), and is denoted by o-(ot). The null history filter 
has, by definition, a null support  O.  

The  set o f  all possible  temporal  supports will be denoted by 9~ in our 
case it is just  the set o f  all finite subsequences {tl . . . . .  t~}, t~ < t2 < "'" 
( tn of  T = ~.  

The  space 9 ~ of  supports can be equipped with the structure of  a partial 
semigroup by  saying that the support  s2 := (t~, t~ . . . . .  t ' ) fo l lows the support  
sl :=  (tl, t2 . . . . .  t,) if  tn < t'l and then defining the composi t ion as 

sl 0 sz = (tl . . . . .  t,, t'l . . . . .  t ' )  

The  set OR(L) can be endowed with the structure of  partial semigroup  
as well  if  we  define 0 on OR(L) by the following rules: for a ,  [3 ~ OR(L), a 
= (atl . . . . .  atn), [3 = (13;j . . . . .  [3,',,), a o [3 is defined iff at(a) < 0"([3) and 
a o [3 = (aq . . . . .  at , ,  13[i . . . . .  13t',,)- Clearly, o-(a o [3) = o-(a) o ~r([3). 

As a mat ter  o f  convention,  we define the null support to fol low and 
precede every  e lement  s ~ fr so that a o 0, 0 o a ,  ot o 1, 1 o ot are def ined 
for a l l a  E OR(L) with values a o 0  = 0 o a  = 0, a o  1 = 1 � 9  = a ,  
respectively.  Thus the unit history 1 serves as a unit element for the semigroup  
structure and the null history 0 is an absorbing element. 

In standard quantum theory, a natural "and" operation on a pair o f  history 
filters a :=  (at,  . . . . .  at ,)  and [3 :=  ([3q . . . . .  13t,) can be defined by 

a A [3 : =  ( ( a  A [3),, . . . . .  ( a  A [3)t.) 

where (eL A [3)t = a t  A [3t is the "and" operation on the lattice L = L(H). 
In case that the quantum logic L is not a lattice, the operat ion "and"  

can be only part ial ly defined, i.e., e~ A [3 is defined iff ati A 13ti is def ined 
for every i = 1, 2 . . . .  , n, in which case 

a ^ [3 : =  ( ( a  A [3) .  . . . . .  (o~ A [3),.) 

For example ,  i f  13 follows a ,  then a o [3 = a A [3. 
Summar iz ing ,  we obtain the fol lowing modif ied axioms of  Isham: 

HI. The Space of  History Filters. The fundamental  ingredient in a theory 
of  histories is a space OR of  history filters or possible universes.  This  space 
has the fol lowing structure. 
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1. OR is a partially ordered set with a unit history filter 1 and a null 
history filter 0 such that 0 - a -< 1 for all c~ ~ OR. 

2, OR has a partial meet  operation ,,, so that 1 A ~ = a for  all oL ~ OR 
and 0 /x  o~ = 0 for all e~ ~ OR. 

3. OR is a partial semigroup with composi t ion law denoted o. I f  ~, 
[3 e oR can be combined  to give ~ o 13 ~ OR, we say that [3 follows 
o~, ot procedes 13, and write eL <1 [3. I f  ~ o [3 is defined, then a o 

13 = ~ A [ 3 .  
4. The null and unit histories can always be combined  with any history 

filter ~ to give 

o ~ o l  = I oe~ = ~, ~ o O = O o o ~ = O  

H2. The Space of Temporal Supports. Any quasi temporal  propert ies  are 
encoded  in a partial semigroup 5? of  supports with unit O.  The support  space 
has the fol lowing properties: 

1. There is a semigroup homomorph i sm ~: OR --~ 5e that assigns a 
support  to each history filter. The support  o f  0 and 1 is def ined to 
b e O  E 5  ~ 

2. A history filter ot is nuclear if it has no nontrivial  decompos i t ion  
of  the form ~ = 13 o ,y, [3, ,y E OR; a temporal  support  is nuclear 
if  it has no nontrivial decomposi t ion in the form s = sl o s2, s~, 
s2 E 5e. Nuclear  supports are the analogs of  points o f  t ime; nuclear  
filters are the analogs of  single-time proposit ions.  A decompos i t ion  
of  e~ ~ OR as c~ = oJ o ~x 2 o - . .  o oL N is irreducible i f  the history 
filters od, i = 1, 2 . . . . .  N, are nuclear. 

H3. The Space of History Events. The set o f  all histories ~ is a D- 
poset  generated by the set o f  all homogeneous  histories. That  is, ~ is a part ial ly 
ordered set with 0 and 1 as the least and greatest elements,  respectively,  with 
a part ial ly defined binary operation O such that [3 O e~ is defined i f f  o~ -< 13 
and (i) and (ii) o f  Remark  2.2 are satisfied. We say that histories o~ and [3 
are disjoint (or orthogonaI) if  there is a history "y such that o~ = "y O [3. We 
then write ~ | [3 = "y, and o~ �9 [3 means, intuitively, "cx or [3." 

We note that c~ @ [3 is always a coarse graining of  cx and [3, but it need 
not be  the supremum of  a and 13. Similarly, [3 Q o~ need not coincide with 
the i n f imum of  [3 and oL • The equality 13 = c~ �9 ([3 O o0 holds whenever  
~x _< [3 is an analog of  the or thomodular  law. 

Let  us assume that history filters corresponding to nuclear  t empora l  
supports  are e lements  of  a D-poset  L such that tensor products  o f  any finite 
n u m b e r  of  copies of  L exist. The nuclear temporal  supports can be thought  
of  as e lements  of  a set T; then every temporal  support  corresponds  to a finite 
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subset F = {h . . . . .  t,}, t~ < t2 < "'" < t, of T. To every t E T, a copy Lt 
of L is assigned. A history filter is a finite sequence (aq . . . . .  atn ) of elements 
of L, corresponding to the temporal support (tl . . . . .  t , )  to points of T in 
which the filter is "active." We will map the history filter (at~ . . . . .  at,,) to 
the element a n | " "  | at~ of the tensor product Lt~ | "'" | Lt,, where 
Lti = L for every h ~ T. The space of all histories then can be realized as 
the direct limit of the directed system of all finite tensor products, (Lr, {fFc: 
Lr ~ L~, F C G, F, G finite subsets of T}), where LF = Lq ~ . , .  ~ Ltn , 
F = (h . . . . .  t,). In order not to lose information, it is appropriate to consider 
a directed system (LF, {fFC: LF ----> L~, F C_ G}) such that every frG is a 
closed morphism. It can be realized if we consider a D-poset L which has 
an ordering set of states, and state tensor products of  copies of L. 

Now let us return to the standard approach. Isham (n.d.) suggests the 
following strategy. Let a = ( a l l  . . . . .  atn ) be a history filter with the support 
(t~ . . . . .  t,), where at~, i --- n, are projections in a Hilbert space H. Let us 
represent it with the product 

O(at, . . . . .  at,,) := % | "'" | % 

which acts on the tensor product space ~tE {tl,...,tn} n t  of n copies of H. The 
map 0: @t~ Iq,.-,~nl ~(H)t  ---) @t~ {tl,...tn} ~ff~(n)t is many-to-one, but it becomes 
one-to-one when restricted to the subspace of projection operators. With the 
aid of the map 0, the operator representation Ht~{tb...,tn} P(n) t  of  the space 
of homogeneous histories ~ . . . . .  t,) with temporal support (q . . . .  tn) is 
embedded in the space P(~tE {tb...,tn} nt)  of projection operators on the Hilbert 
space | Itt. 

To incorporate arbitrary supports we need to collect together the operator 
algebras (~t~{tl,...,tn } ~(I ' t)t  for all supports (h . . . . .  t,). It can be done by 
using an infinite tensor product of copies of ~ (H) .  

Let f~ denote a family of unit vectors in the Cartesian product I]tE T Ht 
of copies of H labeled by the time values t ~ T; i.e., 1) is a map from T to 
the unit sphere in H. The infinite tensor product | Ht based on f~ is 
defined to be the set of functions v: T --~ H such that v(t) = f~(t) for all but 
a finite number of values t. The set of all such functions is given the usual 
pointwise vector space structure by defining (ax + by)(t) = ax(t) + by(t), 
a, b E C, x, y E |  Ht, and the scalar product 

(x, y) :=  [ I  {x(t), y( t ) ) , ,  
tET 

where ( . ,  �9 )~ is the inner product in the Hilbert space H. It is well defined 
because only a finite number of terms contribute to the product. It is a 
standard result that the resulting space is a Hilbert space (Guichardet, 1972). 
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An infinite tensor product | ~ (H) t  is def ined to be the weak  closure 
of  the set of  all functions from T to ~ ( H )  that are equal to the unit operator 
for all but a finite set of t values. 

Let  (3-, -<) be the set of all temporal  supports (tl . . . . .  tn) C T, tl < 
t2 < " '" < tn, partially ordered by set inclusion. For  u E 3-, let ~ (u )  denote 
the set of  all projections in | ~(H)t .  For  u, v e 3-, u <-- v, let the mappings 
f,v: | ~(H)t --~ | ~(H), be the ampliations [i.e., f,v(| At) acts as 
At on the coordinates t E u, and as the unit operators on coordinates t e v\u 
on product vectors in | H,]. The restriction of f ,~  to ~ ( u )  maps ~ ( u )  to 
~'(v), a n d f ,  v: ~ (u )  ---> ~(v)  is an injective homomorph i sm (of  or thomodular  
lattices). Moreover,  (~(u) ,  f,~: u, v ~ 3-, u ---< v) is a directed sys tem.  Let  
(~', f , :  u e 3-) denote the direct limit. 

For every u e 3-, ~ t~ ,  P, can be considered as a well-defined projection 
operator on the product space | Ht. Let  g,: ~(u) ~ L ( ~  Hi), where 
L(| Ht) is the projection lattice in |  Hr. Clearly, g~ Of~v = gu. Hence 

can be embedded into L (@~,  H,). 
A modification of  a decoherence functional may  be obtained as follows. 

A decoherence functional is a function d: ~ • ~ --+ % satisfying the 
following conditions: 

(a ')  d(0, e0 --- 0 for all or. 
(b ')  Hermicity: d(e~, 13) = d(13, or) for  all o~, 13. 
(c ')  Positivity: d(a,  or) >- 0 for  all o~. 
(d ' )  Additivity: if or • 13, then, for  all ~/, d(oL • 13) = d(et, 30 + d([3, ~/). 
(e ')  Normalization: If  e0, eL 2 . . . . .  a N and [3 l, [32 . . . .  , [3 M are two 

complete sets of  histories, then 

N M 
E E d(~ ~ 3j) : 1 
/=l j=l  

Then a decoherence functional behaves as a probabil i ty measure on any 
consistent complete set of histories containing no e lement  orthogonal to itself. 
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